Data Mining Implementation on Choosing Potential Customers Using K-Means Algorithm on PT. Koba Metal Indonesia
Main Article Content
Abstract
PT. Koba metal Indonesia. is one of roll-reforming cooperations who produce light-steel stuffs which is growing rapidly nowadays. One of the important thing in customer management is how a cooperation be able to preserve their customers. the effort of preserving customers becomes important for PT. Koba metal Indonesia. considering of plenty companies who commits at the same sector. To prevent the displacement of customers, knowing the potential group of customers is important, so that the company could preserve those potential customers by giving excellent service, etc. the implication of data mining could assist the company to analize the received data from sales transaction to gain potential customers data. Therefore, a designed application which could implement the data mining for choosing potential customers by clustering and algorithm K-means method is arranged. Then, the information performes with groups who is categorized into potential customers. Besides, rapminder application is also used to examine the data’s accuracy of this built application design. Hereinafter, this application design is expected to assist companies to choose their potential customers and preserve them to advance their business.
Downloads
Article Details
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to journal Tech-E, Universitas Buddhi Dharma as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from journal Tech-E.
journal Tech-E, the Editors and the Advisory Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the journal Tech-E, Universitas Buddhi Dharma are sole and exclusive responsibility of their respective authors and advertisers.
Abstract views: 123 / PDF downloads: 126